The mouse Jhy gene regulates ependymal cell differentiation and ciliogenesis

نویسندگان

  • Hilmarie Muniz-Talavera
  • Jennifer V Schmidt
چکیده

During the first postnatal week of mouse development, radial glial cells lining the ventricles of the brain differentiate into ependymal cells, undergoing a morphological change from pseudostratified cuboidal cells to a flattened monolayer. Concomitant with this change, multiple motile cilia are generated and aligned on each nascent ependymal cell. Proper ependymal cell development is crucial to forming the brain tissue:CSF barrier, and to the establishment of ciliary CSF flow, but the mechanisms that regulate this differentiation event are poorly understood. The JhylacZ mouse line carries an insertional mutation in the Jhy gene (formerly 4931429I11Rik), and homozygous JhylacZ/lacZ mice develop a rapidly progressive juvenile hydrocephalus, with defects in ependymal cilia morphology and ultrastructure. Here we show that beyond just defective motile cilia, JhylacZ/lacZ mice display abnormal ependymal cell differentiation. Ventricular ependyma in JhylacZ/lacZ mice retain an unorganized and multi-layered morphology, representative of undifferentiated ependymal (radial glial) cells, and they show altered expression of differentiation markers. Most JhylacZ/lacZ ependymal cells do eventually acquire some differentiated ependymal characteristics, suggesting a delay, rather than a block, in the differentiation process, but ciliogenesis remains perturbed. JhylacZ/lacZ ependymal cells also manifest disruptions in adherens junction formation, with altered N-cadherin localization, and have defects in the polarized organization of the apical motile cilia that do form. Functional studies showed that cilia of JhylacZ/lacZ mice have severely reduced motility, a potential cause for the development of hydrocephalus. This work shows that JHY does not only control ciliogenesis, but is a crucial component of the ependymal differentiation process, with ciliary defects likely a consequence of altered ependymal differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain.

Neuronal specification occurs at the periventricular surface of the embryonic central nervous system. During early postnatal periods, radial glial cells in various ventricular zones of the brain differentiate into ependymal cells and astrocytes. However, mechanisms that drive this time- and cell-specific differentiation remain largely unknown. Here, we show that expression of the forkhead trans...

متن کامل

Effects of Treatment with Bone Morphogenetic Protein 4 and Co-culture on Expression of Piwil2 Gene in Mouse Differentiated Embryonic Stem Cells

Background Specific growth factors and feeder layers seem to have important roles in in vitro embryonic stem cells (ESCs) differentiation. In this study,the effects of bone morphogenetic protein 4 (BMP4) and mouse embryonic fibroblasts (MEFs) co-culture system on germ cell differentiation from mouse ESCs were studied. MaterialsAndMethods Cell suspension was prepared from one-day-old embryoid bo...

متن کامل

Comparison of Germ Cell Gene Expressions in Spontaneous Monolayer versus Embryoid Body Differentiation of Mouse Embryonic Stem Cells toward Germ Cells

Objective Genetic and morphologic similarities between mouse embryonic stem cell (ESCs) and Primordial Germ Cell (PGCs) make it difficult to distinguish the two cell types in in vitro differentiation. Using the expression of specific markers of germ cells that are not expressed or expressed at low levels in ESCs, can help recognizing in vitro differentiated cells MaterialsAndMethods In this stu...

متن کامل

Centrin 2 is required for mouse olfactory ciliary trafficking and development of ependymal cilia planar polarity.

Centrins are ancient calmodulin-related Ca(2+)-binding proteins associated with basal bodies. In lower eukaryotes, Centrin2 (CETN2) is required for basal body replication and positioning, although its function in mammals is undefined. We generated a germline CETN2 knock-out (KO) mouse presenting with syndromic ciliopathy including dysosmia and hydrocephalus. Absence of CETN2 leads to olfactory ...

متن کامل

Conditional knockout mice for the distal appendage protein CEP164 reveal its essential roles in airway multiciliated cell differentiation

Multiciliated cells of the airways, brain ventricles, and female reproductive tract provide the motive force for mucociliary clearance, cerebrospinal fluid circulation, and ovum transport. Despite their clear importance to human biology and health, the molecular mechanisms underlying multiciliated cell differentiation are poorly understood. Prior studies implicate the distal appendage/transitio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017